Path coefficients
It is advised to standardize the input data (see scale
). By doing this, the standardized coefficients represents the relative
strength of each causal relationship in the model.
Source: R/pathCoef.R
, R/plot.R
pathCoef.Rd
Path coefficients
It is advised to standardize the input data (see scale
). By doing this, the standardized coefficients represents the relative
strength of each causal relationship in the model.
Usage
pathCoef(x, FUN = "lm", formulaArg = "formula", cl, alpha = 0.05, ...)
# S3 method for dSep
pathCoef(x, ...)
# S3 method for graph
pathCoef(x, ...)
# S3 method for list
pathCoef(x, FUN = "lm", formulaArg = "formula", cl, alpha = 0.05, ...)
# S3 method for pathCoef
summary(object, ...)
# S3 method for pathCoef
plot(
x,
y,
plotCoef = TRUE,
legend = TRUE,
lty = c(signif = 1, nonSignif = 2),
alpha = 0.05,
...
)
Arguments
- x
a
pathCoef
object.- FUN
a function or a the name of the function to test the conditional independences. Currently tested with
lm
,glm
,gls
,pgls
,MCMCglmm
andbrm
.- formulaArg
argument name from FUN that accepts the formula parameter of the lineal model.
- cl
the number of CPU cores or a cluster object to run the models in parallel. Cluster object can be defined with
makeCluster
in packageparallel
ormakeCluster
fromsnow
package.- alpha
significance level.
- ...
parameters passed to FUN. Parameters must be named following the FUN arguments (e.g. data=data.frame()).
- plotCoef
if
TRUE
plot the path coefficients.- legend
if
TRUE
add a legend.- lty
a vector of 2 elements with the line type of significant and non significant paths.
Author
Joan Maspons <j.maspons@creaf.uab.cat>
Examples
## Dummy data
g1<- gRbase::dag(~a:c:d + b:d)
g2<- gRbase::dag(~a:c:d + b:d:a)
g<- list(m1=g1, m2=g2)
d<- data.frame(a=rnorm(100), b=rnorm(100), c=rnorm(100), d=rnorm(100))
p.a<- pathCoef(g1, FUN="lm", nobs=nrow(d), data=d)
#> Error in UseMethod("pathCoef"): no applicable method for 'pathCoef' applied to an object of class "igraph"
plot(p.b<- pathCoef(list(m1=g1, m2=g2), FUN="lm", nobs=nrow(d), data=d))
#> Error in (function (classes, fdef, mtable) { methods <- .findInheritedMethods(classes, fdef, mtable) if (length(methods) == 1L) return(methods[[1L]]) else if (length(methods) == 0L) { cnames <- paste0("\"", vapply(classes, as.character, ""), "\"", collapse = ", ") stop(gettextf("unable to find an inherited method for function %s for signature %s", sQuote(fdef@generic), sQuote(cnames)), domain = NA) } else stop("Internal error in finding inherited methods; didn't return a unique method", domain = NA)})(list("igraph"), new("standardGeneric", .Data = function (object, ...) standardGeneric("edgeNames"), generic = structure("edgeNames", package = "graph"), package = "graph", group = list(), valueClass = character(0), signature = "object", default = NULL, skeleton = (function (object, ...) stop(gettextf("invalid call in method dispatch to '%s' (no default method)", "edgeNames"), domain = NA))(object, ...)), <environment>): unable to find an inherited method for function ‘edgeNames’ for signature ‘"igraph"’