Neural network model with keras
Usage
pipe_keras(
df,
predInput = NULL,
responseVars = 1,
caseClass = NULL,
idVars = character(),
weight = "class",
crossValStrategy = c("Kfold", "bootstrap"),
k = 5,
replicates = 10,
crossValRatio = c(train = 0.6, test = 0.2, validate = 0.2),
hidden_shape = 50,
epochs = 500,
maskNA = NULL,
batch_size = "all",
shap = TRUE,
aggregate_shap = TRUE,
repVi = 5,
summarizePred = TRUE,
scaleDataset = FALSE,
NNmodel = FALSE,
DALEXexplainer = FALSE,
variableResponse = FALSE,
save_validateset = FALSE,
baseFilenameNN = NULL,
filenameRasterPred = NULL,
tempdirRaster = NULL,
nCoresRaster = parallel::detectCores()%/%2,
verbose = 0,
...
)Arguments
- df
a
data.framewith the data.- predInput
a
data.frameor aRasterwith the input variables for the model as columns or layers. The columns or layer names must match the names ofdfcolumns.- responseVars
response variables as column names or indexes on
df.- caseClass
class of the samples used to weight cases. Column names or indexes on
df, or a vector with the class for each rows indf.- idVars
id column names or indexes on
df. This columns will not be used for training.- weight
Optional array of the same length as
nrow(df), containing weights to apply to the model's loss for each sample.- crossValStrategy
Kfoldorbootstrap.- k
number of data partitions when
crossValStrategy="Kfold".- replicates
number of replicates for
crossValStrategy="bootstrap"andcrossValStrategy="Kfold"(replicates * k-1, 1 fold for validation).- crossValRatio
Proportion of the dataset used to train, test and validate the model when
crossValStrategy="bootstrap". Default toc(train=0.6, test=0.2, validate=0.2). If there is only one value, will be taken as a train proportion and the test set will be used for validation.- hidden_shape
number of neurons in the hidden layers of the neural network model. Can be a vector with values for each hidden layer.
- epochs
parameter for
keras::fit().- maskNA
value to assign to
NAs after scaling and passed tokeras::layer_masking().- batch_size
for fit and predict functions. The bigger the better if it fits your available memory. Integer or "all".
- shap
if
TRUE, return the SHAP values asshapviz::shapviz()object (orshapviz::mshapviz()for multioutput models).- aggregate_shap
if
TRUE, andshapis alsoTRUE, aggregate SHAP from all replicates.- repVi
replicates of the permutations to calculate the importance of the variables. 0 to avoid calculating variable importance.
- summarizePred
if
TRUE, return the mean, sd and se of the predictors. ifFALSE, return the predictions for each replicate.- scaleDataset
if
TRUE, scale the whole dataset only once instead of the train set at each replicate. Optimize processing time for predictions with large rasters.- NNmodel
if TRUE, return the serialized model with the result. Use
keras::unserialize_model()to get the model.- DALEXexplainer
if
TRUE, return a explainer for the models fromDALEX::explain()function. It doesn't work with multisession future plans.- variableResponse
if
TRUE, returnaggregated_profiles_explainerobjects fromingredients::partial_dependency()and the coefficients of the adjusted linear model.- save_validateset
save the validateset (independent data not used for training).
- baseFilenameNN
if no missing, save the NN in hdf5 format on this path with iteration appended.
- filenameRasterPred
if no missing, save the predictions in a RasterBrick to this file.
- tempdirRaster
path to a directory to save temporal raster files.
- nCoresRaster
number of cores used for parallelized raster cores. Use half of the available cores by default.
- verbose
If > 0, print state and passed to keras functions
- ...
extra parameters for
future.apply::future_replicate()andingredients::feature_importance().